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The mechanisms of displacement of one fluid by another are investigated in an etched 
network. 

Experiments show that both fluids are simultaneously present in a duct, the 
wetting fluid remaining in the extreme corners of the cross-section. Calculation of 
displacement pressures are in good agreement with experiments for drainage, 
imbibition and removal of blobs. The results may be related to some flow behaviour 
exhibited in porous media. 

1. Introduction 
Two-phase flow in porous media is usually described by macroscopic laws (Dullien 

1979), but when capillary forces become important with respect to other forces 
involving viscosity and gravity, such laws are not able to account for some effects 
(imbibition in fissured reservoirs, tertiary recovery of residual oil, hydrology, etc.) 
(Lefebvre du Prey 1978). I n  order to  describe these capillary mechanisms, a different 
approach has been developed over several years, which we may call ‘microscopic’. 
It consists in associating a description of the fluid behaviour a t  the pore scale with 
a representation of the structure of the porous medium using an interconnected pore 
network. The behaviour of a whole sample can be determined from the local scales 
either by computer simulations (Fatt  1956; Dodd & Kiel 1959; Wardlaw & Taylor 
1976; Androutsopoulos & Mann 1979; Mann, Androutsopoulos & Gulshan 1981 ; 
Koplik 1982) or using a statistical ‘ percolation-type ’ approach (Chatzis & Dullien 
1977; de Gennes & Guyon 1978; Golden 1980; Lenormand & Bories 1980; Chandler 
et al. 1982; Larson, Scriven & Davis 1981 ; de Gennes 1982 private communication; 
Chatzis & Dullien 1982). 

Research has been mainly focused on the techniques for scale changes (network 
structure, 3-dimensional network, percolation, etc.), whereas models for fluid be- 
haviour, obtained from experiments in capillary tubes of circular cross-section, have 
remained simplistic. 

However, rectangular and triangular cross-sections were considered by Kwon & 
Pickett (1975) and by Singhal & Somerton (1970, 1977) ; the former did not include 
the influence of the shape on fluid behaviour, and the latter inferred the flow 
characteristics from duct flows and did not present any experimental evidence to 
support their hypotheses. 

In  this paper we study the mechanism of displacement of one fluid by another with 
reference to observations in etched networks. We show that the Laplace Law linking 
the capillary pressure to the interface curvature (P, = v(l /R1 + l/&)) is sufficient to 
describe the different mechanisms that have been observed. 
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FIGURE 1. Sectional view of the ducts inside the transparent resin. 

First, the experimental set-up is described and the basic displacement mechanism 
in a single duct and then in an intersection are described. Then i t  is shown how 
‘external constraints ’ (capillary barrier, prescribed pressure, . . . ) can be included and 
how the fluid topology can be used to describe some displacement processes in the 
network : drainage, imbibition and removal of residual oil. 

The size of this network is deliberately limited in order to  emphasize the physical 
mechanism. The statistical aspect of the behaviour of a large-size network which 
presents a porous medium will be discussed in another paper. 

2. Making rectangular cross-section capillaries and their properties 
Various techniques have already been used to visualize fluid motions in porous 

media. Pyrex glass-powder models (Van Meurs 1957 ; Chuoke, Van Heurs & Van der 
Poell959; Martin, Crouzil & Combarnous 1976) do not allow observations on the pore 
scale; others consisting of one or several layers of glass beads between two plates 
(Kimbler & Caudle 1957; Chatenever & Clamoun 1952; Chatenever, Kindra & Kyte 
1959) present intricate interfaces which are difficult to  interpret. Chemically etched 
networks on glass plates (Mattax & Kyte 1961), give clear observations, but the shape 
of the section of the ducts is not well defined, and, moreover, problems occur owing 
to the adhesion between the glass plates, especially for studies of imbibition (the 
wetting fluid enters the space between the plates). 

To avoid these problems we have developed a moulding technique using transparent 
polyester resin and photographically etched mould (Bonnet & Lenormand 1977). 

The etched ducts are inside the resin (figure 1 )  and have a rectangular cross-section, 
of depth y = 1 mm and width 2, which varies according to the drawing (x’ > 0.1 mm). 
The pair of fluids are chosen so as to  give very good wettability (with a zero contact 
angle and no hysteresis) ; examples are oil-air and monomeric resin-water. The 
wetting fluid is coloured and appears in black on the photographs. In  the present 
study we use simple geometries and small networks (of 135 nodes), but this technique 
can also be used to make much greater random networks (at present more than 40000 
ducts, and lo6 in the future) for the study of the corresponding relationships between 
the microscopic scale and the sampling scale (Lenormand 1981). 
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FIGURE 2. Situation of the fluids in the section of a duct when the capillary pressure P, is equal 
to  the threshold pressure Pp = 2 4 1 / 2 +  l/y): (a )  perspective view, ( b )  sectional view ( P ) .  

3. Basic mechanisms 
Quasi-static motion is obtained by increasing very slowly the pressure P, of the 

wetting fluid (imbibition) or the pressure P,, of the non-wetting fluid (drainage). The 
wettability is perfect (0 = 0 ) ,  the interfacial tension CT is constant, and gravity forces 
are weak (as the motion takes place in an horizontal plane, PJpgy = 10 for y = 1 mm). 

The most simple geometries are considered first : a duct and then intersecting ducts. 
We observe two kinds of displacement of the meniscus in a duct. 
( a )  ‘ Piston-type’ motion: the non-wetting fluid enters the duct filled with wetting 

fluid only if the capillary pressure is equal to  or greater than a given value 
Pp = Pnw-Pw, which we call ‘the threshold pressure’. For this pressure, the interface 
is in equilibrium inside the duct and its motion is reversible (drainage or imbibition) 
(figure 2a) .  We observe that both fluids are simultaneously present in a section, 
the coloured wetting fluid remaining in the extreme corners of the cross-section 
(figure 2 b). 

The value of the threshold pressure can be calculated from the force balance acting 
on the interface (Lenormand 1981; Legait & Jacquin 1982). For a duct of infinite 
length we obtain the following equation : 

X 
, where E =  - 

Y ’  

44-7c) 
F(E) = __ 

2(  1 + C )  {( 1 + C) - [( 1 + E)’ -~(4- ~)] i}‘  
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FIGURE 3. Variation of P(E) as a function of the shape factor, allowing the threshold pressure in 

an infinite rectangular duct to be calculated: P, = F(E) Zu(l/z+ l/y). 
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FIGURE 4. ‘Snap-off’ in a duct: (a)  in the plane of the network; ( b )  sectional view; the dashed 
curve shows the critical position. 

The non-dimensional term F ( x / y )  is nearly equal to 1 (figure 3) so that we use the 
following approximation : 

Pp = 2@(k+b). (3) 

( b )  ‘Snap-o f  : when the capillary pressure is greater than the threshold pressure 
Pp the non-wetting fluid invades all the duct, but we always observe the colour due 
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FIGURE 5. ( a )  Behaviour of the meniscus during a type-I1 imbibition in a node; ( b )  variation of 

the pressures along the axis 0, 0,. 

to the wetting fluid remaining along the edges. At a given point M ,  the radius of 
curvature in the plane parallel to the axis of the ducts is nearly infinite and the radius 
p in the orthogonal plane is linked to the capillary pressure P, by the Laplace Law 

P, = a lp .  (4  1 
If the front meniscus Z is not inside the duct (figure 4a) the interface moves along 

the edges in a reversible way (drainage or imbibition) until its configuration remains 
steady (figure 4b). The fluid has to be in contact with the duct walls, otherwise an 
unstable filament of non-wetting fluid is created. We shall assume that the ' snap-off ' 
takes place a t  p* = ix (if x < y )  and we shall call the corresponding value P, of the 
pressure the ' snap-off' pressure. From ( 4 )  

2a 
ps =- Y (z > y ) .  (5') 

Note that Pp is always greater than P, ; the ' snap-off' occurs only when ' piston-type ' 
motion is not possible for topological reasons. This point will be considered in more detail 
in the section devoted to the study of imbibition. 

Here we examine the conditions for a meniscus to be in equilibrium in the space 
available a t  the intersection of four ducts (which we also call a 'node' of a network). 

In drainage, the fluid flowing out of a duct into an intersection immediately fills 
it. This phenomenon occurs rapidly and without collapse. Motion into an adjacent 
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FIGURE 6. (a )  Type I2 imbibition, the collapse takes place when the meniscus reaches the wall to 
the duct a t  the point A ( R  = (2 + 4 2 )  2). ( b )  More general case when the two ducts cross a t  an angle 
2a.  ( c ) ,  (d )  These other configurations are very stable, and the imbibition only occurs by 'snap-off' 
inside the ducts. 

Class 

1 
2 
3 
4 
5 
6 
7 

Width 

0.2 
0.4 
0.6 
0.8 
1 
1.2 
1.4 

x (mm) PPlU 
12 

7 
5.3 
4.5 
4 
3.7 
3.4 

=* 
PslU PI,/,, 

10 9 
5 5.5 
3.3 4.3 
2.5 3.8 
2 3.4 
2 3.2 
2 3 

1 
PIZ/(. 

3.4 
2.7 
2.5 
2.4 
2.3 
2.2 
2.2 

TABLE 1. Values of the various displacement pressures P/u (mm-') in 
the experimental network 

duct continues further if the capillary pressure is greater than the threshold pressure 
in that duct. 

In imbibition, the behaviour depends on the number and spacing of the ducts filled 
with non-wetting fluid, as follows. 

( a )  Imbibition11 (the non-wetting fluid is in one duct) (figure 5 a ) .  When the pressure 
Pg increases in the wetting fluid, the capillary pressure P, decreases, and an 
instability appears when the meniscus no longer touches the walls (position 2) .  As 
the curvature decreases (3) the difference between the pressures a t  each side of the 
interface increases, which involves a rapid displacement of the fluids. 

The variation of the pressure along the axis 0, 0, is given in figure 5 ( b ) ,  where the 
pressures at 0, and 0, are maintained constant during this change. In  position 4, the 
pressure difference across the meniscus is equal to the threshold pressure Pp in this 
duct (assuming that the Laplace Law applies to a slowly moving meniscus). 

This example shows us that a rapid displacement can occur despite the fact that 
the imposed conditions are quasi static. 
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Let us take a special case by considering 4 ducts with the same width x, where the 
instability occurs a t  pressure PI, : 

( 6 )  Imbibition I2 (non-wetting fluid in two adjacent ducts) (figure 6 a ) .  The collapse 
occurs when the meniscus reaches a point A for R(2 + 4 2 )  x, that  is for a collapse 
pressure 

PIZ = 2 4 + + J .  0 15 1 

In  a more general case when the two ducts cross at an angle 2a (figure 6 b )  

(7 )  

The other configurations (figures 6c, d )  are very stable, and the imbibition occurs 
only by ‘snap-off’ inside the ducts (pressure Ps, equations ( 5 )  and (5 ’ ) ) .  

All the expressions given previously are only approximations : however they allow 
us to interpret some displacement experiments, carried out in an etched network 
containing seven sizes of ducts. I n  table 1 the different critical pressures corresponding 
to each duct width x (the depth is constant, y = 1 mm) are given. 

4. Drainage in a network 
A network fitted with a semipermeable membrane (permeable to  the wetting fluid) 

is first saturated with wetting fluid. Drainage is then induced by a gradual decrease 
of the pressure P, of the wetting fluid, a t  one boundary, Pnw being kept equal to the 
atmospheric pressure. 

In  figure 7 some stages of the drainage are shown, and in figure 8 the curve for 
the corresponding capillary pressure is given. The pressure is deduced from A H ,  and 
saturation measured by continuous weighing of the network. 

Three stages are observed. 
( a )  Inlet effect (figure 7a, part AB of the curve in figure 8 ) :  the capillary pressure 

allows drainage from ducts of classes 7 4  (see table l ) ,  but they do not form a 
continous path through the network. The penetration is restricted to the vicinit,y of 
the injection plane. 

( b )  Plate (figure 7 b ,  part BC of the drainage curve) : ducts a t  class 3 are accessible, 
and with the previous ones (classes 4-7), they form a continous path which allows 
non-wetting fluid to invade a great number of ducts and to  penetrate t o  the 
semipermeable membrane. 

(c) Outlet effect (figure 7 c ,  part CD of the drainage curve) : increasing the pressure 
allows pores of classes 2 and 1 to be emptied, but only those ducts close to the exit 
face are affected. The variation in saturation is also caused by flow of wetting fluid 
along the edges of the ducts adjacent to the membrane (see $3) .  

This experiment shows that a t  the end of the drainage a large part of the wetting 
fluid remains trapped in the network. During drainage, the wetting phase can flow 
in two ways. 

(a )  Through the whole section of the ducts when there is a continuous path towards 
the exit face (duct 1 ,  figures 9a,  b ) .  

( b )  By continuous flow along the edges when the non-wetting fluid, standing in a 
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FIQURE 7. Drainage in a network. The non-wetting fluid is injected at  the left of the picture: (a )  
capillary pressure allows the drainage in ducts ranging between 7 4 ;  (b )  ducts of rank 3 are 
accessible; ( c )  end of the drainage - ducts of ranks 1 and 2 are accessible. 

node prevents liquid continuity in ducts filled with the wetting fluid : duct 2 (figures 
9a-c) empties despite the non-wetting fluid. This flow, which we call a 'leak' 
mechanism, is sometimes too slow to allow one or several ducts to  empty. I n  that 
case, they remain filled. The quantity of the captured fluid is thus linked to fluid 
viscosity and the rapid rate of drainage. 

Let us now perform an imbibition after this initial drainage. 
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from the 

5. Imbibition in a network 

end of the drainage. 
We now increase the pressure of the wetting fluid from the state obtaining at the 

We again observe three steps. 
(a)  Part DE of the imbibition curve (figures 8 and 10a): we notice 'piston-type' 

displacements in the ducts of classes 1-5; such displacements apply only to a small 
number of ducts because closed structures (loops) form a barrier to access to the 
semipermeable membrane. 

(b)  Near E (figure lob) : this obstacle is overcome by 'snap-off' in ducts of class 2 



346 R. Lenormand, C. Zarcone and A .  Sarr 

Non- 
wetting 
fluid 
+ 

Wetting fluid 

+ 

0 L 4 m m  - 
FIQURE 9. Displacement of the wetting fluid during drainage : throughout the whole section of the 

duct (duct I ) ;  along the edges (duct 2). 

(ducts marked by direction signs in figure lob). The corresponding value of the 
pressure Pla  3 mm-’ is slightly lower than that calculated in $3.  

( c )  Part EF  of the imbibition curve: following the collapse, ‘piston-type’ displace- 
ments and imbibition I1 appear in a great number of ducts (figure 1Oc). This stage 
takes place rapidly because the meniscus is not in equilibrium. After this, and for 
the same value ofpressure, 12-type imbibition appears (see sign marked in figure lOc), 
which induces loop breaking and traps blobs of non-wetting fluid. 

The imbibition ends a t  point F when the non-wetting fluid is no longer continuous. 
The phenomenon of hysteresis seems to be a superposition of two effects : 
( a )  the increase in the radius of curvature a t  a node (imbibition 11) or at some ducts 
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FIGURE 10. Imbibition in the network after the drainage shown on figure 6:  (a )  ‘piston-type’ 
displacement in the duct near the exit; ( b )  ‘snap-off’ in some ducts (class 2);  ( c )  imbibition I1 and 
12; ( d )  end of imbibition, and trapping of blobs. 

and nodes in a loop (collapse and imbibition I2), which is essentially a local or 
‘microscopic ’ effect ; 

( b )  the formation of a continuous barrier of closed patterns of non-wetting fluid 
along tjhe semipermeable membrane, which is a macroscopic phenomenon that takes 
place a t  the network scale. 

12 V L M  135 
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0 1 mm 

FICCJRE 1 1 .  Displacement of a linear blob: ( a )  the pressure difference AP = P,, - Pwz is lower than 
the critical value AP*; ( b )  AP = AP*, the blob is evacuated in droplets. 

6. Displacement of trapped blobs 
At the end of quasi-static imbibition, some pockets of non-wetting fluid are still 

trapped in the network. We now try to move them by applying a pressure gradient 
to make the wetting fluid flow through the system. 

The pressure of the wetting fluid can be calculated from the flow rate and the 
pressure drops in the different ducts, but the pressure inside a blob is a priori 
unknown. However, considering the special case of our experiments, we are able to 
calculate the capillary pressure using the meniscus curvature and then deduce the 
preasure inside the blob. Let us present some examples. 

' Linear ' blobs (without loops) (figure 1 1 ) 

We progressively increase the pressure P,, of the wetting fluid upstream of the blob, 
the downstream pressure P,, being taken as the reference (figure 12). When the 
pressure difference AP = P,, - P,, increases, we observe that the shape of the 
meniscus C, (figure 12a) changes. A critical value AP* exists for which the blob enters 
the duct (figure 12b). According to the size of the duct, two possibilities can occur: 

( 1 )  the whole blob enters duct 2 and is rapidly cleared away; 
(2) a part of the blob separates and the blobs are removed as droplets (figure 11 b ) .  
In  order to explain these observations, we shall assume that the pressure of the 

non-wetting fluid is uniform (an assumption that is likely to  be accurate if the fluid 
has a low viscosity, Legait 1981). 

(a)  AP < AP* (figure 12a), the meniscus C, is in equilibrium inside the duct 1. The 
capillary pressure at 0, is then fixed by the geometry of the duct : 
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(a ) ( b )  
FIGURE 12. Situation of the linear blob in the ducts and variation of the pressure along the 

axis: (a) before the threshold; ( b )  at the threshold. 

which gives the capillary pressure P,, a t  0,, since 

Pc2 = P,, i- AP. (8 )  

This situation is a steady state as long as the meniscus C, does not enter duct 2 ; 
the limiting position is reached for PCz = 2a/(l/x,+ l/y), that  is 

(b) AP 2 AP* (figure 12b) ,  the meniscus C, enters the duct 2 a t  a very low velocity 
if AP is closed to AP*. 

We can explain the formation of droplets (collapse): let us suppose that an 
equilibrium state is possible inside duct 2. The pressure distribution is then as 
sketched in figure 12(b )  (if i t  is assumed that the pressure drop in the wetting fluid 
along the edges is roughly linear). Snap-off occurs in duct 2 if the capillary pressure 
PcA a t  point A is lower than the 'snap-off' pressure Psz in this duct, such as illustrated 
in the example given in figure 11 ( P C A / a  % 8 mm-l, Ps2/a x 10 mm-I). 

Blobs trapped in a doublet (jigures 13 and 14) 
The meniscus Zz enters duct 2 .  The value of the capillary pressure Pc2 a t  0, is then 
imposed and consequently the capillary pressure P,,, inside the blob is known and 
its value remains constant. The capillary pressure PcM at any point M located on 
the interface decreases when AP = P,, - Pw2 increases, the pressure PWz being taken 
as the reference (figure 13b). 

The loop will break according to one of the two mechanisms that have been already 
described : 

(1) breaking at a point M in one of the four ducts if the capillary pressure PcM takes 
a value lower than the snap-off pressure in that duct (figures 13a, 14); 

(2)  breaking the upstream meniscus when it  reaches the wall at point A (type 12 
imbibition) (figures 13b,c); (7) then gives the value of P12. 

12-2 
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FIQURE 13. Displacement of a blob trapped in a doublet: (a )  snap off in a duct; 
( b ) ,  ( c )  breaking in the node (imbibition 12). 

Blob trapped in a network 

In  figures 15 (a ,  b )  an example is given of the displacement of a blob by a loop breaking. 
We can generalize the previous demonstrations if we consider that  the release can 
be described as a superposition of a drainage downstream of the blob and an 
imbibition upstream (pressure Pp, Ps, PI,, PI, according to the topology), the critical 
pressure being equal to 

Ap* = Pdrainage-Pimbibition. 
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FIGURE 14. Situation of the meniscus of a blob trapped in a doublet. 

Considering the values of the different pressures (table 1) we can see that the rate 
of flow of the wetting fluid is always greater when a nodule including a loop has to 
be displaced (the blobs are in ducts of class greater than 3, so P, and PIz are less than 
Pp and PIl). After the loop breaks, we observe a rapid displacement of the linear blob 
(figure 15c). 

7. Conclusion 
These original results will be used as the basis for the study of the behaviour of 

a very large network which simulates a real porous medium. Scale-change techniques 
(direct computing simulation or ' percolation-type ' statistical laws) and results 
obtained will be discussed in other papers. 

However, the physical phenomena described here can in themselves suggest 
hypotheses and research for describing phenomena that have been observed in real 
porous media. Some examples are given below. 

(1) Dynamic phenomena in drainage can be explained by the 'leak' mechanism, 
presented in $4 (influence of velocity on saturation) (Nguyen Tan Hoa 1978; Smiles, 
Vachaud & Vauclin 1971). 

(2) In  imbibition, the wetting fluid motion along the edges seems to be very much 
slower than the non-wetting-fluid displacement ; the viscosity of the latter should not 
interfere with the kinetics of spontaneous imbibition. However, i t  is obvious that the 
cross-section of the ducts in a real porous rock is far from a rectangular shape. 

(3) Modelling of hysteresis has to take into account two kinds of phenomena acting 
at different scales : 

(a )  the local mechanism, linked with the drainage pressure Pp and the imbibition 
pressures P,, PI, and PIz; 

(b )  the macroscopic effect (network scale) linked to  the topology of the non-wetting 
fluid a t  the end of the drainage closed by the semipermeable membrane. 
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FIGURE 15. (a ) ,  ( b )  Displacement of a blob trapped in a network by breaking the loop 
(imbibition 11). (c) The linear blob is rapidly evacuated. 

(4) The conditions of the displacement of trapped blobs involve not only the 
threshold sizes but also the topology of the blobs (this is contrary to  the classical 
concept of the capillary number (Ng, Davis & Scriven 1978). 

These examples emphasize the fact that  the topology of the non-wetting fluid is 
important a t  the end of the drainage (part of the closed structures). Such a result 
involves two directions when we study displacements in porous media : 
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(i) physical study of the formation of loops when drainage occurs and characteri- 
zation of important parameters : kinetics of drainage, viscosities, interfacial tension 
as well as properties linked to coalescence (Charpentier 1978) ; 

(ii) introduction of a macroscopic parameter which expresses the number of loops 
in the non-wetting-fluid structure (for example, the ' cyclomatic ' number introduced 
in percolation by Domb & Stoll 1977). 
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